206 research outputs found

    Colour-kinematics duality and the Drinfeld double of the Lie algebra of diffeomorphisms

    Get PDF
    Colour-kinematics duality suggests that Yang-Mills (YM) theory possesses some hidden Lie algebraic structure. So far this structure has resisted understanding, apart from some progress in the self-dual sector. We show that there is indeed a Lie algebra behind the YM Feynman rules. The Lie algebra we uncover is the Drinfeld double of the Lie algebra of vector fields. More specifically, we show that the kinematic numerators following from the YM Feynman rules satisfy a version of the Jacobi identity, in that the Jacobiator of the bracket defined by the YM cubic vertex is cancelled by the contribution of the YM quartic vertex. We then show that this Jacobi-like identity is in fact the Jacobi identity of the Drinfeld double. All our considerations are off-shell. Our construction explains why numerators computed using the Feynman rules satisfy the colour-kinematics at four but not at higher numbers of points. It also suggests a way of modifying the Feynman rules so that the duality can continue to hold for an arbitrary number of gluons. Our construction stops short of producing explicit higher point numerators because of an absence of a certain property at four points. We comment on possible ways of correcting this, but leave the next word in the story to future work

    On tree amplitudes with gluons coupled to gravitons

    Full text link
    In this paper, we study the tree amplitudes with gluons coupled to gravitons. We first study the relations among the mixed amplitudes. With BCFW on-shell recursion relation, we will show the color-order reversed relation, U(1)U(1)-decoupling relation and KK relation hold for tree amplitudes with gluons coupled to gravitons. We then study the disk relation which expresses mixed amplitudes by pure gluon amplitudes. More specifically we will prove the disk relation for mixed amplitudes with gluons coupled to one graviton. Using the disk relation and the properties of pure gluon amplitudes, the color-order reversed relation, U(1)U(1)-decoupling relation and KK relation for mixed amplitudes can also be proved. Finally, we give some brief discussions on BCJ-like relation for mixed amplitudes.Comment: 33pages,no figur

    The Momentum Kernel of Gauge and Gravity Theories

    Get PDF
    We derive an explicit formula for factorizing an nn-point closed string amplitude into open string amplitudes. Our results are phrased in terms of a momentum kernel which in the limit of infinite string tension reduces to the corresponding field theory kernel. The same momentum kernel encodes the monodromy relations which lead to the minimal basis of color-ordered amplitudes in Yang-Mills theory. There are interesting consequences of the momentum kernel pertaining to soft limits of amplitudes. We also comment on surprising links between gravity and certain combinations of kinematic and color factors in gauge theory.Comment: 19 pages, 1 figur

    The Kinematic Algebra From the Self-Dual Sector

    Full text link
    We identify a diffeomorphism Lie algebra in the self-dual sector of Yang-Mills theory, and show that it determines the kinematic numerators of tree-level MHV amplitudes in the full theory. These amplitudes can be computed off-shell from Feynman diagrams with only cubic vertices, which are dressed with the structure constants of both the Yang-Mills colour algebra and the diffeomorphism algebra. Therefore, the latter algebra is the dual of the colour algebra, in the sense suggested by the work of Bern, Carrasco and Johansson. We further study perturbative gravity, both in the self-dual and in the MHV sectors, finding that the kinematic numerators of the theory are the BCJ squares of the Yang-Mills numerators.Comment: 29 pages, 5 figures. v2: references added, published versio

    BCJ Relation of Color Scalar Theory and KLT Relation of Gauge Theory

    Full text link
    We present a field theoretical proof of the conjectured KLT relation which states that the full tree-level scattering amplitude of gluons can be written as a product of color-ordered amplitude of gluons and color-ordered amplitude of scalars with only cubic vertex. To give a proof we establish the KK relation and BCJ relation of color-ordered scalar amplitude using BCFW recursion relation with nonzero boundary contributions. As a byproduct, an off-shell version of fundamental BCJ relation is proved, which plays an important role in our work.Comment: 26 pages, 9 figure

    Note on New KLT relations

    Full text link
    In this short note, we present two results about KLT relations discussed in recent several papers. Our first result is the re-derivation of Mason-Skinner MHV amplitude by applying the S_{n-3} permutation symmetric KLT relations directly to MHV amplitude. Our second result is the equivalence proof of the newly discovered S_{n-2} permutation symmetric KLT relations and the well-known S_{n-3} permutation symmetric KLT relations. Although both formulas have been shown to be correct by BCFW recursion relations, our result is the first direct check using the regularized definition of the new formula.Comment: 15 Pages; v2: minor correction
    corecore